2. Solar panel: free health care, free energy
The average temperature in the Sudan is 29°C, and in the hottest months it can reach 45°C. In order to cool down the hospital, a number of measures were taken during construction. In addition to this, air conditioners were installed after the building was constructed.
In the first case, a series of insulating techniques were used. The external walls for example are 58cm thick and contain an insulating cavity that prevents the building from heating up.
The use of traditional cooling systems would have implied high levels of electrical energy or fossil fuel consumption (the needs in terms of volumes of air to be cooled down are hefty: 28 000 m3).
In a country rich in oil resources, Emergency has sought out alternative sources of clean energy: the sun.
Nine containers left Italy for Khartoum with 300 solar panels, bringing to the country an almost unknown technology, and one that is very seldom used in Europe.
Today a plant that contains 288 solar collecting items (for an equivalent of 900 m2, or the area of 10 houses) produces 3 600 KW- as much as burning 355 kg of gas - without producing one gram of CO2.
Each collecting item is made up of a number of copper tubes that contain water; these are themselves placed in insulated glass tubes that allow the water inside the copper tubes to heat up. The water transfers the accumulated heat to an insulated 50m3 tank that keeps the water at 80-90°C. The heat is then cooled down to 7°C in two “chilling” machines.
Solar power thus allows to produce cold without discharging any particles in the atmosphere, and limiting the use of electric power to water circulation pumps. Two regular boilers have also been installed in case the solar power is not sufficient to run the two “chilling” machines.
The cold water is used to lower the levels of heat in the rooms that need to be chilled for medical or other purposes.
The machines used for this last part of the cooling circuit are called UATs (Units of Air Treatment). There are 8, each one designed for a specific area of the hospital (CPR, surgery, administration, etc).
The UATs draw air from outside and “force” it into a 7°C tube that cools it down. A second system of tubes subsequently transports the cool air to various hospital rooms according to need.